
Note: In this problem set, expressions in green cells match corresponding expressions in the
text answers.

Note: I should make a statement explaining that my viewpoint differs from the text on the
matter of iteration techniques like the ones in this section. I do not desire to run through all
the steps of the Newton or Secant methods in detail. If Mathematica can do what is needed
inside a black box, that is fine with me. All I want to know is which black box it is, and the
conditions under which it is expected to work correctly.
Clear["Global`*⋆"]

1 - 13 Fixed-point iteration
Solve by fixed-point iteration and answer related questions where indicated.

3. f = x - 0.5 Cos[x] = 0, x0 = 1. Sketch.

Clear["Global`*⋆"]

Plot[x -− 0.5 Cos[x], {x, 0, 4},
ImageSize → 200, PlotStyle → Thickness[0.006]]

1 2 3 4

1

2

3

4

Simplify[x -− 0.5 Cos[x]]

x -− 0.5 Cos[x]

According the explanation in the document center for FindRoot, entering one guess value
turns on Newton’s method. (Inserting two guess values invokes a variant of the secant
method.) When I saw a precision attribute mentioned in the text answer I thought about
putting in a precision goal, but Mathematica’s default precision is good enough, probably,
for all these problems. As for the guess x0, in this case it was not chosen with consideration.
FindRoot[x -− 0.5` Cos[x], {x, 1}]

{x → 0.450184}

Let me try to find g[x]. According to material at https://mat.iitm.ac.in/home/sryedida/public_htm-
l/caimna/transcendental/iteration%20methods/fixed-point/iteration.html it is basically just a process
of getting x on one side of the equals sign and everything else on the other side. (Wikipedia
has a more complicated calculation, dealing with derivatives, such that g[x] might be equal

to x -− f[x]f '[x] .

Let me try to find g[x]. According to material at https://mat.iitm.ac.in/home/sryedida/public_htm-
l/caimna/transcendental/iteration%20methods/fixed-point/iteration.html it is basically just a process
of getting x on one side of the equals sign and everything else on the other side. (Wikipedia
has a more complicated calculation, dealing with derivatives, such that g[x] might be equal

to x -− f[x]f '[x] .

Using the first method gives me g[x] = 0.5 Cos[x], which agrees with the text answer.

5. Sketch f[x] = x3 - 5.00 x2 + 1.01 x + 1.88, showing roots near ±1 and 5. Write x =
g[x] = (5.00 x2-−1.01 x + 1.88)x2 . Find a root by starting from x0 = 5, 4, 1, -1. Explain the
(perhaps unexpected) results.

Clear["Global`*⋆"]

First of all, there appears to be a typo in the problem description. The suggested form of
g[x] has an incorrect sign for the last constant. Shouldn’t that be "-−1.88”?

Plotx3 -− 5.00 x2 + 1.01 x + 1.88, {x, -−2, 6},

ImageSize → 200, PlotStyle → Thickness[0.006]

-−2 2 4 6

-−30

-−20

-−10

10

20

It looks like the root is at approximately 0.8 on the x-axis.

FindRootx3 -− 5.00 x2 + 1.01 x + 1.88, {x, 0.7}

{x → 0.8}

x3 -− 5.00 x2 + 1.01 x + 1.88 /∕. x → 0.8`

-−8.88178 × 10-−16

The quantity shown above is very small, less than 10-−10. The default Chop chop would chop
it. But I have not covered all the problem instructions. I need to try out the x0 values pro-
vided. I seem to remember that a 3rd degree polynomial is expected to have three roots.
Apparently, the first two test values are shifted to the right far enough to catch the largest
root.

FindRootx3 -− 5.00 x2 + 1.01 x + 1.88, {x, 5}

{x → 4.7}

FindRootx3 -− 5.00 x2 + 1.01 x + 1.88, {x, 4}

{x → 4.7}

The next suggested root is close enough to the middle root to retrieve that one.

2 19.2 Solution of Equations by Iteration 798.nb

FindRootx3 -− 5.00 x2 + 1.01 x + 1.88, {x, 1}

{x → 0.8}

And for the last root, FindRoot again finds the closest root to the guess value.

FindRootx3 -− 5.00 x2 + 1.01 x + 1.88, {x, -−1}

{x → -−0.5}

x3 -− 5.00 x2 + 1.01 x + 1.88 /∕. x → -−0.5000000000000011`

-−7.77156 × 10-−15

Yes. The guess value of x0 was close enough to the left root to trigger a successful search
there.

7. Find the smallest positive solution of Sin[x] = ⅇ-−x .

Clear["Global`*⋆"]

The periodic nature of the sine function takes over in the positive domain. It looks like the
smallest positive root falls at about 0.7.
Plot[Sin[x] -− ⅇ-−x, {x, -−2, 17},
ImageSize → 200, PlotStyle → Thickness[0.006]]

5 10 15

-−3

-−2

-−1

1

FindRoot[Sin[x] -− ⅇ-−x, {x, 0.7}]

{x → 0.588533}

The location of the root on the plot was a little misleading, I think, at least at the plot size I
requested.
Sin[x] -− ⅇ-−x /∕. x -−> 0.5885327439818611`

0.

9. Find the negative solution of x4 - x - 0.12 = 0.

Clear["Global`*⋆"]

19.2 Solution of Equations by Iteration 798.nb 3

Plotx4 -− x -− 0.12, {x, -−10, 9}, PlotRange → {{-−10, 9}, {-−2, 10}},

ImageSize → 200, PlotStyle → Thickness[0.006]

-−10 -−5 5
-−2

2

4

6

8

10

By choosing a particular plot range this function comes into focus.

FindRootx4 -− x -− 0.12, {x, -−0.1}

{x → -−0.119794}

x4 -− x -− 0.12 /∕. x -−> -−0.11979405979852116`

-−3.90313 × 10-−18

11. Drumhead. Bessel functions. A partial sum of the Maclaurin series of J0[x] (section
5.5) is f[x] = 1 - 14 x

2 + 1
64 x

4 - 1
2304 x6. Conclude from a sketch that f[x] = 0 near x = 2.

Write f[x] = 0 as x = g[x] (by dividing f[x] by 14 x and taking the resulting x-term to the
other side). Find the zero. (See section 12.10 for the importance of these zeros.)

Clear["Global`*⋆"]

Plot1 -−
1

4
x2 +

1

64
x4 -−

1

2304
x6, {x, -−10, 9}, PlotRange → {{-−8, 7}, {-−3, 4}},

ImageSize → 200, PlotStyle → Thickness[0.006]

-−8 -−6 -−4 -−2 2 4 6

-−3

-−2

-−1

1

2

3

4

f[x_] = 1 -−
1

4
x2 +

1

64
x4 -−

1

2304
x6

1 -−
x2

4
+
x4

64
-−

x6

2304

I will build the g[x] function just to humor the text.

4 19.2 Solution of Equations by Iteration 798.nb

g[x_] = Simplify
f[x]

1 /∕ 4 x


4

x
-− x +

x3

16
-−

x5

576

And check the root of it.

FindRoot
4

x
-− x +

x3

16
-−

x5

576
, {x, 2}

{x → 2.39165}

4

x
-− x +

x3

16
-−

x5

576
/∕. x -−> 2.391646690891294`

1.11022 × 10-−16

But I think that Mathematica is completely capable of skipping the g[x] function in this case.

FindRoot1 -−
1

4
x2 +

1

64
x4 -−

1

2304
x6, {x, 2}

{x → 2.39165}

The text lists a Newton construct, 2.405 4S-exact, as it calls it, but since this is off the green
root point by a considerable amount, I don’t understand its value.

13. Existence of fixed point. Prove that if g is continuous in a closed interval I and its
range lies in I, then the equation x = g[x] has at least one solution in I. Illustrate that it
may have more than one solution in I.

14 - 23 Newton’s method.

Note: Since as I mentioned FindRoot incorporates Newton’s method, I take the position
that I am using it now.

15. f = 2 x - Cos[x], x0=1. Compare with problem 3.

Clear["Global`*⋆"]

The plot shows the current problem (teal) as well as the function of problem 3 (gold).

19.2 Solution of Equations by Iteration 798.nb 5

Plot[{2 x -− Cos[x], x -− 0.5 Cos[x]}, {x, -−4, 4},
PlotRange → {{-−4, 4}, {-−3, 4}}, ImageSize → 200,
AspectRatio → Automatic, PlotStyle → Thickness[0.006]]

-−4 -−2 2 4

-−3

-−2

-−1

1

2

3

4

Though the root point is not that close to the 1 suggested in the problem, I will use it.
FindRoot[2 x -− Cos[x], {x, 1}]

{x → 0.450184}

2 x -− Cos[x] /∕. x -−> 0.4501836112948736`

1.11022 × 10-−16

The problem asks that I contemplate the common root betwen problem 3 and problem 15.

17. Dependence on x0. Solve problem 5 by Newton’s method with x0 = 5, 4, 1, -3.
Explain the result.

Clear["Global`*⋆"]

Just to review the plot,

Plotx3 -− 5.00 x2 + 1.01 x + 1.88, {x, -−2, 6},

ImageSize → 200, PlotStyle → Thickness[0.006]

-−2 2 4 6

-−30

-−20

-−10

10

20

Since FindRoot with a single guess point uses Newton’s method, the problem has already
been worked in problem 5 for all values except for the final x0 mentioned, -3.

FindRootx3 -− 5.00 x2 + 1.01 x + 1.88, {x, -−3}

{x → -−0.5}

The suggested guess point brings me back to the negative-valued root

6 19.2 Solution of Equations by Iteration 798.nb

x3 -− 5.00 x2 + 1.01 x + 1.88 /∕. x -−> -−0.5000000000000012`

-−8.43769 × 10-−15

I notice that Mathematica has changed the 16th place digit from that used before in prob-
lem 5, though naturally without any appreciable change in the result.

19. Associated Legendre functions. Find the smallest positive zero of P42 = (1 -
x2 P4 '' = 15

2 (-7 x4 + 8 x2 - 1) (section 5.3) (a) by Newton’s method, (b) exactly, by
solving a quadratic equation.

Clear["Global`*⋆"]

I reviewed section 5.3 briefly, and am now assuming that the P designates a polynomial as
described in problem 14 within problem set 5.3. That may be interesting in the realm of
hypergeometrics and indicial equations, but at the moment I will try to use only the last
part, the expanded polynomial expression.

Plot
15

2
-−7 x4 + 8 x2 -− 1, {x, -−2, 6},

ImageSize → 200, PlotStyle → Thickness[0.006]

-−2 2 4 6

-−60000

-−50000

-−40000

-−30000

-−20000

-−10000

After trying a series of one-sies, I think a table is called for

19.2 Solution of Equations by Iteration 798.nb 7

TableFindRoot
15

2
-−7 x4 + 8 x2 -− 1, {x, n}, {n, 0, 1, 0.01}

FindRoot::jsing: Encountereda singularJacobianat thepoint {x} = {0.}. Try perturbingthe initialpoint(s). .

{{x → 0.}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 1.}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → 0.377964}, {x → 0.377964}, {x → 0.377964}, {x → 0.377964},
{x → -−0.377964}, {x → -−0.377964}, {x → -−0.377964}, {x → -−1.},
{x → 0.377964}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.},
{x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.},
{x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.},
{x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}, {x → 1.}}

It looks like 0.377964 meets the necessary description for (a).

Reduce
15

2
-−7 x4 + 8 x2 -− 1 ⩵ 0, {x}

x ⩵ -−1 || x ⩵ 1 || x ⩵ -−
1

7
|| x ⩵

1

7

It looks like x ⩵ 1
7

 meets the necessary description for (b).

I don’t know that Reduce uses the quadratic equation, but in the document center is the
statement, “When expr involves only polynomial equations and inequalities over real or
complex domains, then Reduce can always in principle solve directly for all the xi.”

21. f = x3 - 5 x + 3 = 0, x0 = 2, 0, -2

Clear["Global`*⋆"]

8 19.2 Solution of Equations by Iteration 798.nb

Plotx3 -− 5 x + 3, {x, -−4, 5}, ImageSize → 200, PlotStyle → Thickness[0.006]

-−4 -−2 2 4

-−40

-−20

20

40

NumberFormTableFindRootx3 -− 5 x + 3, {x, n}, {n, {-−2, 0, 2}}, {10, 6}

{{x → -−2.490864}, {x → 0.656620}, {x → 1.834243}}

The values in the above cell agree with the text answer. Originally I had the NumberForm
parameters set at {6,6}, and the last value did not come out correctly {x→1.834240}. When
I raised the precision parameter to 10, I got the text answer value.

23. Vibrating beam. Find the solution of Cos[x] Cosh[x] = 1 near x = 32π. (This deter-
mines a frequency of a vibrating beam; see problem set 12.3)

Clear["Global`*⋆"]

I’m including two plots, the left one relating to the problem request, the right one to a
trivial experiment.
p1 = Plot[Cos[x] Cosh[x] -− 1, {x, -−4, 5},

ImageSize → 200, PlotStyle → Thickness[0.006]];

p2 = Plot[Cos[x] Cosh[x] -− 1, {x, -−0.05, 0.05},
ImageSize → 200, PlotStyle → Thickness[0.006], AspectRatio → 1,
PlotRange → {{-−0.04, 0.04}, {-−2*⋆^-−8, 0.2*⋆^-−7}}];

Row[{p1, p2}]

-−4 -−2 2 4

-−20

-−10

10

20

-−0.04 -−0.02 0.02 0.04

-−2.×10-−8

-−1.×10-−8

1.×10-−8

2.×10-−8

Solving the problem request is not difficult.

19.2 Solution of Equations by Iteration 798.nb 9

NumberForm[FindRoot[Cos[x] Cosh[x] -− 1, {x, 4.5, 5.}], {10, 5}]

{x → 4.73004}

Apparently I got off easy by being asked for the largest root. As for the thorny one around
the origin, I need more Mathematica skills in order to have a chance of getting something
useful out of it. If I try
Table[FindRoot[Cos[x] Cosh[x] -− 1., {x, n}, AccuracyGoal → 20,

PrecisionGoal → 16, MaxIterations → 1000], {n, -−0.005, 0.005, 0.0002}]
FindRoot::lstol:

The linesearchdecreasedthestepsize to withintolerancespecifiedby AccuracyGoalandPrecisionGoalbutwasunable
to finda sufficientdecreasein themeritfunction. You mayneedmorethan
MachinePrecision digitsof workingprecisionto meetthesetolerances. .

FindRoot::lstol:
The linesearchdecreasedthestepsize to withintolerancespecifiedby AccuracyGoalandPrecisionGoalbutwasunable

to finda sufficientdecreasein themeritfunction. You mayneedmorethan
MachinePrecision digitsof workingprecisionto meetthesetolerances. .

FindRoot::lstol:
The linesearchdecreasedthestepsize to withintolerancespecifiedby AccuracyGoalandPrecisionGoalbutwasunable

to finda sufficientdecreasein themeritfunction. You mayneedmorethan
MachinePrecision digitsof workingprecisionto meetthesetolerances. .

General::stop: Furtheroutputof FindRoot::lstol willbe suppressedduringthiscalculation. .

{{x → -−0.00013127}, {x → -−0.000159622}, {x → -−0.0000273773},
{x → -−0.000144819}, {x → -−0.000123364}, {x → -−0.000221738},
{x → -−0.000155742}, {x → -−0.000179311}, {x → -−0.000194984},
{x → -−0.000172364}, {x → -−0.000145085}, {x → -−0.0000820118},
{x → -−0.000103277}, {x → -−0.000104055}, {x → -−0.000220568},
{x → -−0.0000920962}, {x → -−0.000173217}, {x → -−0.0000966512},
{x → -−0.00018501}, {x → -−0.000171792}, {x → -−0.000159081},
{x → -−0.0000479927}, {x → -−0.000142951}, {x → -−0.000098512},
{x → -−0.000116438}, {x → 0.}, {x → 0.000116438},
{x → 0.000098512}, {x → 0.000142951}, {x → 0.0000479927},
{x → 0.000159081}, {x → 0.000171792}, {x → 0.00018501},
{x → 0.0000966512}, {x → 0.000173217}, {x → 0.0000920962},
{x → 0.000220568}, {x → 0.000104055}, {x → 0.000103277},
{x → 0.0000820118}, {x → 0.000145085}, {x → 0.000172364},
{x → 0.000194984}, {x → 0.000179311}, {x → 0.000155742},
{x → 0.000221738}, {x → 0.000123364}, {x → 0.000144819},
{x → 0.0000273773}, {x → 0.000159622}, {x → 0.00013127}}

the results are ambiguous. Whereas

SolveCos[x] Cosh[x] -− 1 < 10-−10, {x}

Solve::nsmet: Thissystemcannotbe solvedwiththemethodsavailableto Solve. .

Solve-−1 + Cos[x] Cosh[x] <
1

10000000000
, {x}

requires a lot of computing time and still fails. Maybe an ultra zoomed plot

10 19.2 Solution of Equations by Iteration 798.nb

p3 = Plot[Cos[x] Cosh[x] -− 1, {x, -−0.05, 0.05},
ImageSize → 400, PlotStyle → Thickness[0.004], AspectRatio → 0.4,
PlotRange → {{-−0.00015, 0.00018}, {-−2*⋆^-−16, 0.1*⋆^-−15}},
WorkingPrecision → 20, Epilog →
{{Green, PointSize[0.02], Opacity[0.3], Point[{-−0.000114, 0}]},
{Red, PointSize[0.02], Opacity[0.3], Point[{-−0.000025, 0}]},
{Red, PointSize[0.02], Opacity[0.3], Point[{0.0000398, 0}]},
{Green, PointSize[0.02], Opacity[0.3], Point[{0.0001597, 0}]}}]

would shed some light. Yes, this helps. It tells me that any x in the interval delimited by the
two center points shown in the plot has a function value which effectively equals zero. It
makes me more disposed to go with a graphic solution to this kind of problem, especially
considering that the result comes back almost instantly. (Note: Before I specified a working
precision, the green points figured into the zero zone.)

25. TEAM PROJECT. Bisection method. This simple but slowly convergent method for
finding a solution of f[x] = 0 with continuous f is based on the intermediate value theo-
rem, which states that if a continuous function f has opposite signs at some x = a and x =
b (>a), that is either f[a] < 0, f[b] > 0, or f[a] > 0, f[b] < 0, then f must be somewhere
on [a,b]. The solution is found by repeated bisection of the interval and in each iteration
picking that half which also satisfies that sign condition.
(a) Algorithm. Write an algorithm for the method.
(b) Comparison. Solve x = Cos[x] by Newton’s method and by bisection. Compare.
(c) Solve ⅇ-−x = Log[x] and ⅇx + x4 + x = 2 by bisection.

Clear["Global`*⋆"]

The (a) part of the problem is addressed below, and was obtained in MMAStackExchange
question 69771 in the answer of J.M. is away. It is a bisection function to which I am
expected to feed 1. a function name, 2. a search interval, 3. a tolerance allowance, and 4.
a number for max iterations.

19.2 Solution of Equations by Iteration 798.nb 11

Bisection[f_, int_, tol_, niter_] :=
Block[{m = tol + 1, prev, ym, yl = f[Last@int]}, NestWhile[(prev = m;

m = Total@# /∕ 2;
ym = f[m];
If[ym *⋆ yl > 0, yl = ym;
{First@#, m}, {m, Last@#}]) &,

int, ym ≠ 0 && Abs[m -− prev] > tol &, 2, niter]]

That is all of the bisection code. Now for a short test with the function that was included on-
line
func[t_?NumericQ] := 1 + NIntegrate[Sin[x^2] -− x, {x, 0, t}];

Bisection[func, {1, 2.`20}, 10^-−14, 1000]

{1.9252809180739163253, 1.9252809180739234307}

Having kicked the tires on the bisection code, I can try it out on my own function, after first
making the plot.
Plot[x -− Cos[x], {x, -−4, 5}, ImageSize → 200, PlotStyle → Thickness[0.006]]

-−4 -−2 2 4

-−2

2

4

funct[x_?NumericQ] := x -− Cos[x]

Bisectionfunct, {0.5, 1.}, 10-−14, 1000

{0.739085, 0.739085}

I want to try out the bisection code on problem 5, in which were found three separate roots.
funct[x_?NumericQ] := x3 -− 5.00 x2 + 1.01 x + 1.88

Bisectionfunct, {-−1., 5.}, 10-−14, 1000

{4.7, 4.7}

Evidently, the bisection function only finds the last root in the interval. That being the case,
I don’t understand why it needs to repeat the root.

For part (b) of the problem

NumberForm[FindRoot[x -− Cos[x], {x, 0.5}], {10, 6}]

{x → 0.739085}

As seen above, the FindRoot answer (Newton’s method), matches the bisection method
answer.

12 19.2 Solution of Equations by Iteration 798.nb

As seen above, the FindRoot answer (Newton’s method), matches the bisection method
answer.

For part (c) of the problem, two cases are presented

Plot[ⅇ-−x -− Log[x], {x, -−4, 5},
ImageSize → 200, PlotStyle → Thickness[0.006]]

-−4 -−2 2 4
-−1

1

2

3

funct[x_?NumericQ] := ⅇ-−x -− Log[x]

NumberFormBisectionfunct, {1., 1.5}, 10-−14, 1000, {10, 5}

{1.30980, 1.30980}

Plotⅇx + x4 + x -− 2, {x, -−4, 5},

ImageSize → 200, PlotStyle → Thickness[0.006]

-−4 -−2 2 4

100

200

300

400

500

funct[x_?NumericQ] := ⅇx + x4 + x -− 2

NumberFormBisectionfunct, {-−1., 1.}, 10-−14, 1000, {10, 6}

{0.429494, 0.429494}

26 - 29 Secant method
Solve, using x0 and x1 as indicated:

As mentioned above, (a variation of) the secant method is incorporated into FindRoot
when two guesses are included.

27. Problem 21, x0 = 1.0, x1 = 2.0

Clear["Global`*⋆"]

First repeating the plot

19.2 Solution of Equations by Iteration 798.nb 13

Plotx3 -− 5 x + 3, {x, -−4, 5}, ImageSize → 200, PlotStyle → Thickness[0.006]

-−4 -−2 2 4

-−40

-−20

20

40

NumberFormFindRootx3 -− 5 x + 3, {x, 1., 2.}, {10, 5}

{x → 1.83424}

FindRootx3 -− 5 x + 3, {x, 1., 2.}

{x → 1.83424}

x3 -− 5 x + 3 /∕. x -−> 1.834243184313922`

8.88178 × 10-−16

The above answer matches the text, and shows that the secant (or Brent’s method) works.
The pink x substitute was not copied from the result of the NumberForm line, rather from
the yellow line below that one. It is both interesting and necessary to understand that
NumberForm, while delivering my desired output format, nevertheless drops, internally, all
digits beyond what I ask for.

29. Sin[x] = Cot[x], x0 = 1, x1 = 0.5

Clear["Global`*⋆"]

Plot[Sin[x] -− Cot[x], {x, -−2, 2},
ImageSize → 200, PlotStyle → Thickness[0.006]]

-−2 -−1 1 2

-−4

-−2

2

4

NumberForm[FindRoot[Sin[x] -− Cot[x], {x, 1., 0.5}], {10, 6}]

{x → 0.904557}

FindRoot[Sin[x] -− Cot[x], {x, 1., 0.5}]

{x → 0.904557}

14 19.2 Solution of Equations by Iteration 798.nb

Sin[x] -− Cot[x] /∕. x -−> 0.9045568943023813`

-−1.11022 × 10-−16

19.2 Solution of Equations by Iteration 798.nb 15

